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Morphological transformations play an important role in the morphological
analysis of images. Certain features of images can be revealed by putting them
through a cleverly chosen sequence of morphological transtormations. This
paper deals with some aspects of morphological transformations, in particular
with the question under what conditions iteration of such mappings yields
openings or closings.

Note. This paper is dedicated to Prof. H.A. Lauwerier on occasion of his 65th
birthday.

1. ENTRODUC’HON

processing which 1s
, and the design of

the investigation of 1m and
specific algorithms for im analysis. It deﬂves its tools from algebra, topol-
ogy, integral geometry, and stochastic geometry. Mathematical morphology
was founded by Matheron [5] an After a long period of relative
obscurity mathematical morphology 1s becomn ore p op uﬁ ar, not
in the least because of its interesting and challenging mathem | aspects: for
a number of recent results we refer to Ma

In this paper our attention will
images, although an extension to grey-level functions is straigh
over we will be concerned on wuh morphological 1mage Ua.nsformaﬂons
[hese are transformats all subsets of R%(continuous
case) or Zd (dlscrete case) into itself a: are vanam under transla-
u'ansfo mation { which maps the Space QP(E ) of all subsets of E (where E =R“
Oor Zd) into itself and satisfies

WX, ) =WWX)),, for XCE and heE. (1.1)

Here X, = {x +h|xeX} is the translate of X al . We point out that there
does not exist an unambiguous definition of a mo: hologlcal transformation 1n
the literature: for our purpose the above definition will do. Morphological
transformations are used to detect certain features of an object, or, as Serra
puts it in the introduction to [7]:

be focussed on bin
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m, and to uncover
ore or less similar entities by put-

"‘In order to compar , onize tl

their genesis, or to follow their evolution In

reduce them to their essentials —

classifies them into groups of n

ting them through sequences of set transformations.’

A common feature of morphological transformations (we will see some typi-
cal examples in the forthcoming sections) whick

view, makes them very interesting, is their nonlin

Furthermore, they are often locally defined: to determine i

does not have to know the entire image X but only XN

ithin some bounded mask M positioned at h. To be precise

hey(X) if and only if h e X N M,). (1.2)

Of course, M depends on { and by iteration of ¢ the size of the mask may
increase, and eventually it may become unbounded.

'he remainder of this section will be used to introduce some further termi-
nology. Let y: NE)—>RHE), where E=R? or Z% be an arbitrary mapping.
Then ¢ 15 called
- increasing if X CY implies Y(X) CY(Y)

- extensive if X CY(X), for every XCE

- anti-extensive if Y X)CX, for every X CE

- idempotent if y*(X)=y(X), for every X CE.

Here y* =y oy. We denote by id the identity mapping given by id (X)=X. If
Y1, Yn are two mappings then we write ¢ <<y if Y;(X) Cgbz(X) for every

X CE. Thus a mapping is extensive if y=id. If y; 1s a mapping for any i mn
the index set 1, then N;_pY; is the mapping given by

(Nier YN X) = N Yi(X), XCE.

Uier ¢ 18 defined similarly. The dual (or complementary) mapping of i is
defined as

V(X) = (UX9)), XCE.

Here X° stands for the complement of X.

Finally we devote some words to the discrete space E =Z* subdivided by the
square grid. In this case an image X can be represented as a (possibly infinite)
collection of pixels. Every pixel has 4 horizontal and vertical neighbours, the
so-called 4-neighbours. In addition it has 4 diagonal neighbours which together
with the 4-neighbours are called the 8-neighbours. An object X CZ* is called
4-connected 1if for every pair A, k € X there exists a sequence h =hgy,h,hs,...

h, =k 1n X such that h;,_; and h; (i =1,...,m) are 4-neighbours. Simil

Ell'ly, 8-
connectedness 1s defined. One can still think of other neighbourhood relations.

Serra and co-workers [9] have chosen to work on the hexagonal grid where
every pixel has six neighbours. The main advantage of the hexagonal grid over

the square grid 1s that it has more rotational symmetry. This is reflected in the
resulting algorithms which are simpler than in the square case.
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FiGuRre 1. Dilation and erosion of X by A4. (a) Structuring element A.
(b) Orginal image X. (c) Dilated set X®A4. (d) Eroded set

XOA.
(Uies X)®A4 = U ((X;DA) (2.6a)
(M1 X))OA = N (X;©4). (2.6b)

Here X; CFE for every i in the (finite or infinite) index set I. The duality rela-
tion (2.3) states that dilation of an object yields the same result as the erosion
of 1ts background. The main implication of this relation is that properties of
dilations and erosions always occur in pairs: to every property of dilations
there corresponds a dual property of erosions and vice versa. Yet there exists a
second duality relation between dilations and erosion which is only based on

the (partial) ordering relation C and which for that reason can also be used in
more general situations:

XDPACY if and only if X CYOA. (2.7)
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adjunction: see [1] '-

X C(X®A)OA, (2.8)

ay Both dilation and erosion
Inecreasin g an artant transformations. It is

 we state below.
Let : P(E)—>P(E) |

g Matheron’s theorem
introduce the notion of a kernel.

VY] = {4 CE|0ey(A4)} (2.9)
By V" we denote the kernel of the dual mapping 1.e. V' = V[y*].

be an arbitrary

v 2.1 (M M). Let y: NE)—>NE) be an increasing

translation-invariant mapping with kernel V. Then

YU

) = U, Eq(‘(X@A) = MNgey (X@A)

median

nite stnm
poin ts, say 2p — E. n 1mage X we define py(X) by

Y') denotes the num

] ber of points of Y. In Figure 2 we have depicted
e actl on of the median filter p, 1n the 2-dimensional case with CROSS as
structuring element. This partlcular example 1s called the 4-median filter.
Before we decompose py as a union of erosions we state a trivial but, from a
practical point of view, very important result.

PROPOSITION 2.2. Let ¢ be an increasing translation-invariant transformation
with kernel V. If Vo CV is such that for every A €V there exists an Ay such
that Ao CA, then

1IJ()() — UAOE‘\Q (XeA 0)*

[aragos has shown that under some extra assumption on ¥ one can
always choose Yy to be minimal. If the underlying space is discrete and if the
transformation y is locally defined (c.f. Section 1) then ¥y can be chosen finite.
Lhis 1s the content of the next theorem.
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FIGURE 2. The 4-median filter. (a) Original image X. (b) 4-median of
X. (¢) Comparison of the original and the transformed 1m-

age.

[HEOREM 2.3. Let E =Z°. If is an increasing translation-invariant transforma-
tion which is locally defined, then there exists a finite subset “Vy of V [{] such that

YX) = Uy (XOA).

PROOF. Let “V be the kernel of i, 1.e. AV if and only if Oey(4). Since ¢ 1s
locally defined there exists a bounded (hence finite) mask M CZ? such that

Oey(A4) if and only if 0ey(4 NM).
Define

Yo = {ANM|4 eV}
Then “Vy C°V, and for every A €V there exists an Age®y such that 45 CA,
namely Ao = A NM. Since Vy CPM) and M is finite, also Yy 1s finite. [

In the case of p,; we have

Vipal = (BCZ# (A NB)=p},
and we may choose

V% = {BCZ’BCA and #(B) = p}.
Thus, by a well-known combinatorial result,

2p —1
- 7]

In the example of Figure 2, we have p =3 and hence # (%)=10. The number

# ("V) 1Increases exponentially with p, and eventually there will be more
economic ways to perform uy,.
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H ARE NOT INCREASING

ical morphology 1s concerned with
ithms use transformations
m X¢ as an obvious but also important
ding this prototype example to the increasing
previous section and taking unions, intersections and
mpositions, we obtain a large famil morphological transformations which
attention is the so-called hit-or-miss transformation. Let A,B be two non-

intersecting structuring elements. We define
®(A,B) = {he€E|A, CX and B, CX*}. (3.1)

One can easily give a description of this mapping in terms of erosions and
dilations by using the following (geometric) characterization of erosion:

XO©A = {heE|4,CX}. (3.2)
Combiming (3.1), (3.2) and (2.3) we get

which are not increasing. W

X®(A,B) = (XQA)N(X©OB) = (X@A)ﬂ(X@E?)“

— (XOA)\ (XD B)

Putting 7 = (4,B) we may also write X®T instead of X&®(4,B). The hit-or-
miss transformation is well suited to locate within an object points with certain
(local) geometric properties, e.g. isolated points, border points, or corner
points. In Figure 3 below, a hit-or-miss transformation is used to locate all
lower left corner points of an object: note that the structure of (4,B) retiects
the structure one is looking for within the object.

(a) (b) (c)
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FIGURE 3. Hit-or-miss transformation. (a) Structuring element (4,B);
the points of A are denoted by M, the points of B by .
(b) Original image. (c) The hit-or-miss transformation

X®(A,B) consists of all lower left corner points of X.

As we already mentioned, the hit-or-miss transformation plays a prominent
role in quite a number of morphological image processing algorithms. Below,
we shall describe in some detail two such algorithms: the (finite) convex hull
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neieh ['his 1s also the key feature of the so-called cellular
automata: the state of a cell ( at time ¢ +1 1s determined by 1ts own state
1s Conway’s game of life.

We introduce two other tran

XOT = XU(X®T) (3.3)

(3.4)
Since X@®T C X if 0c4 and X®T = @ if 4 NB£ 3, the thickening operator
yields a non-trivial result only if A NB = @ and O¢A. Similarly, the thinning
1S a non-trivial operation if A NB = @ and 0gB. It is not dif

ficult to heck
that thickening and thinnin g are dual operations:
X O(4,B) = (XO(B,A)Y. (3.5)

The examples which we give below involve a sequential application of the
thickening and thinning operation. So let us first make some general remarks
about iteration of morphological transformations. Let ¢:P(E)—P(E) be a
translation-mvariant (not necessarily increasing) transformation. Suppose
furthermore that y is anti-extensive, i.e. Y(X)C X for all X CE. Then, for every
non-negative integer k, ¢ 7! <y and we define y* by

VRX) = 0, (3.6)

Then Y® is translation-invariant and anti-extensive. Furthermore, Yy 1is
increasing if ¢ is. It is rather easy to show that Y is idempotent if and only if

woy™ =¢%. In Section 4 we present an example of a morphological transfor-

mation ¥ which is translation-invariant, increasing, and anti-extensive, but for
which ¢® is not idempotent.

For extensive mappings y we define , by

Voo (X) = U JF(X). (3.7)

3.1. Example 1: Convex hull

Convexity of an object is a global property. Local information does not suffice
to decide about the convexity of an object. So how can morphological transfor-
mations, which essentially only require local knowledge of an image (at least in
the practical cases where the structuring elements are bounded), be used to
censtruct the convex hull of an object? We consider the case E = 72 and
define the convex hull CH(X) as the intersection of all discrete halfplanes
which contain X: by a discrete halfplane we mean a set of points (x,y)eZ?
satisfying the requirement ax +by<c, where a,b,ceZ. A set X CZ? is called
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convex if X
ref er to [7].

[, SO -’ Unfortunately Ehe nel <V

character of convexity. Th
S10n5 1S noi of y practical

Ch |a

Osnwe

ultlple of 45° ) situation char ges

tion of thickenin s and ch ylel d S the 45-—convex hull 1f the uaﬁ object 1S

YX) = (.. ((X OT)O Tz ) JIOIERNO Tg ).

[hen Y 1s an extensive, translation-invariant mapping and Y, (X) = CH 45(X) i
X 18 4-connected. We shall not prove this result, but rather illustrate it by
ans of an exan ple: see Figure 4b.

3.2. Example 2: Skeleton

Our second example handles the computation of the skeleton of a discrete
object. Our use of words (‘the’ skeleton) might suggest that this notion is well-
defined, but unfortunately this 1s far beyond the truth, both in the continuous
and the discrete case. We refer the reader to chapter XI of [9] and chapters
11-13 of [10] for an interesting discussion on both the theoretical and practical
aspects of the skeleton. A possible definition of the skeleton in the continuous
case E =R goes as follows: The skeleton of an object X is the set of all
points x such that the maximal ball B centered at x and contained in X, inter-
sects the boundary of X 1n two or more points. One may think of the skeleton
as a set which 1s a union of arcs and which has the same homotopy as the set
X.

Algonthms for the computations of ‘the’ skeleton (at least, something which
looks like 1t) in the discrete case are sometimes called homotopic thinnings. As
an example we mention the sequential thinning by the structuring elements
Ty,T,,..,Tg of Figure 5a. Formally, this algorithm, which 1s oniginally due to
Lewaldl [3], transfonns X 1nto Y (X): here Y(X) =
(.((XOT,))OT,)O --- OTg). Again, a figure can explain more than
thousand words.
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FIGURE 4: (a) Structuring elements for the computation of the 45-

convex hull; 7',,7T5,T,4, etc. are the 45 -, 90°-, 135°-, etc.
rotations of T;. (b) The 45-convex hull can be computed
by 1teration of YX)=(..(XOT|)OT,)0..0OTg), with
T,T>,,...,Tg as depicted 1n (a). The first object 1s the initial
image X, the second object 1s Y(X), etc. The one but last
object shows the final result Y (X)=CH4(X), which 1s
reached after 7 iterations. The last object compares the ori-
ginal image to its 45-convex hull.

by iteration of Y X)=(...(XOT)OT,)O --- OTyg), with
I',T,,..,Tg as depicted 1n (a). The first object is the initial
image X, the second object is Y(X), etc. The one but last

object shows the final result . (X)=CH,(X), which is
reached after 7 iterations. The last object compares the ori-

ginal 1mage to 1ts 45-convex hull.
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g elements for the computation of the homo-
T3,T5,T7 are the 90°-, 180°-, 270°-, rota-

apphes to T2 y T4 ’ Tﬁ s TS (b)

hinning obtained by iteration of the mapping

deplcted in (a) (Lewaldl s algorithm).
initial image, the second Y(X), etc.
18 Y| (X), the homotopic thinnis
> 1terations. ]
ning Y*°(X) to the initial in

1age X.

1)OT3)0 - - - OTy), with T',T>,...,

Tg as

[he first object 1s the
[he one but last object
nning of X, and 1s reached after
The last object compares the homotopic thin-

4. OPENING, CLOSING AND ITERATION OF INCREASING TRANSFORMATIONS
In Section 2 we saw that dilation and erosion are irreversible operations and

that
(XOA)DACXC(XDA)OA
where 1n general the inclusions are strict. The operations
= (XbA)oA4

29
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the closing resp
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for dos gs if a 1s an open ng then a” 1S a dos g and vice versa.

ning gwen by (4.2) 1s a very special on all 1t a structural open-
ing to in dicate that it uses one structuring element 4. Below we shall prove
that the class of structural openings forms a basas for the ovemﬂ class of open-—
xiliary results.

PROPOSITION 4.1. Let a; be an opening for every i in the index set 1. Then
a = U, ja; is an opening as well.

PROOF. Translation-invariance, increasingness, and anti-extensivity of a are
trivial. We only prove the 1demp0tence Since a << id we immediately get that
o’ <a. On the other hand &? =a;a; = a? = o, hence &*=U,;a; =a. O

[he action of a particular opening is best understood by studying its domain of
invariance. Let ¢: P(E)—P(E) be an arbitrary mapping. The domain of invan-
ance (= set of fixed points) of ¢ 1s defined as

Inv(y) = {XCEWX) = X}.

If « is an opening, then Inv(a) is closed under translations and arbitrary
unions (in particular, @ € Inv(a)). We say that Inv(a) 1s invariant under dila-
tions, since A€ Inv(a) and B CE arbitrary implies that 4 DB e Inv(a). Our
next result shows among others, that every opening is uniquely charactenzed
by its domain of invariance. The proof is straightforward and we omit 1it.

PROPOSITION 4.2. Let a), ay be openings. Then a;=a; if and only if
Inv(ey) CInv(e;), and in that case cjay = agay = ap. In particular, oy =ay if
and only if Invay)=Inv(a;).

C9(F) is invariant under dilations, then
ap(X) = U{4 €Al4 gX } (4.5)

defines an Openmg with Inv(aa) = A. In particular, aa(X)€A for every X CE.
From (4.5) it follows immediately that X, Cap(X), for AeA, X CE, where for
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(4.6)

THEOREM 4.3. Every opening a can be written as the union of structural openings
in the following way

a(X) = Ugcinv@) 24 (4.7)

Proor. Defining A =Inv(a) we get that A =1
Proposition 4.2. Now the result follows immeds

Since in most applications, Inv(a) 1s very large, the practical us:
rather limited. Fortunately, it is often possible to reduce the number of struc-
turing elements in (4.7) considerably.

use of (4.7) 1s

PROPOSITION 4.4. Let o be an opening and let Ao CP(E) be such that
Inv(a)={AD®B|A€Ay,BCE}, ie., Inv(a) is the smallest dilation-invariant fam-

ily in 9(E) which contains Ag. Then
a(X) = Uyen, X4 (4.8)

The proof is left to the reader. Note that, because of Proposition 4.1, (4.8)
defines an opening for every collection A of structuring elements.

ExAMPLE. The mapping X—int(X), where int(X) denotes the interior of X,
defines an opening on P(R?). For A, we can choose the family of open balls
B, with radius r>0. Then

mt(X) — Ur>0XB,: X;Rd

So far. the results stated in this section are due to Matheron [5]. We now show
how to construct openings from arbitrary increasing translation-invariant map-
pings. We refer to Section 5.7 of [10] for some related results. lo our
knowledge the results given below are new.

Let ¢ be an increasing translation-invariant mapping which is anti-extensive.
Then Inv(y) is a dilation-invariant subset of P(E). If a is the opening ‘gen-
erated’ by Inv(y), i.e. a is the opening with Inv(a) = Inv(y), then a<cy. Note
that a=4 if and only if i is an opening. Under some extra assumption on v,
« can be obtained by iteration of ¢. Or, to put it differently: iteration of ¢

yields an idempotent mapping. We refer to Theorem 4.5 below for a precise
statement. We recall that

¥ = N

n=1

In order for ¢y* to be idempotent it is necessary and sufficient that
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Yoy® =y, 1e, YN, 1Y (X)) = N, 1Y (X). The following counterexample
ilustrates that this i1d entity does not hold 1n genera .

COUNTEREXAMP and let the structuring element 4 be given by

= {...,— 7, --—-5 ---3 — 1 2} Define z,b( X) = (X @A)HX. Then ¢ 1s an increas-
n g, tra; slation-invariant, anti-extensive ma ;-~ g on NZ). However, Y* 1s not
idempotent as we show now. Let X={0,1,3,5,7,...}. Then (see Figure 7)

YX) = {0,3,5,7,...}, JA(X) = = {0,5,7,...}, etc. Hence | J®(X) = {0}). But
Y(* (X)) = ¢({0}) = 2.

-6 -5 -4 -3 -2 -1 0 ! 2 3 4 5 & 7 8 9

FIGURE 7. Y(X)=(XDPA)NX, where A={.,—5 —3,—12}. If
X={0,1,3,5,...} then y*(X)={0,2n +1,2n +3,...,}. Hence

Y* (X)={0}. But ¢ oy®(X)= D 7y*(X).

In order for ¢* to be idempotent we have to impose an extra condition on 4.
Let X, CE,neN, and XCE. By X,|X we mean that

W CXy 1 CX,CX, - C..C XY,

and that
mn?an — X:r

1., X, 1S a non-increasing sequence in P(E) which ‘converges’ to X. The map-
ping y: P(E)—P(E) is called |-continuous if X, | X implies that Y(X, )¢¢(X) for
every non-increasing sequence { X, }.

THEOREM 4.5. Let iy be an increasing, translation-invariant, anti-extensive map-

ping which is |-continuous. Then y* is an opening (in particular, Y is idempo-
tent) and Inv(x}®) = Inv(y).
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PROOF. For every X CE we have by definition that (X}

|-continuity of ¢ we get that ' ™' (X) \Lzlz(tjzm(
same we find that Y(X) = Y(¥™(X)). 1k e relation Inv(y) = Env(z,b“"’) follows

belong to the class of |-continuous mappings. But this class is actually much
larger.

PROPOSITION 4.6. Compositions, arbitrary intersections, and finite unions of |-
continuous mappings are |-continuous. In particular, if A is finite, then the dila-

tion X—>XDA is |-continuous.

F. W prove that the union of a finite number of |-continuous map-
pmgs 1S \L -continuous. The other statements are almost trivial.

Let §; be |-continuous for i =1,...,p, and define Yy = U¥f_ ;. We show that i
IS |-continuous. Let X,,¢X Smce X CX, we have y;(X)Cy;(X,) (i=1,...,p)
and so Y(X)C z,b(X ). Thi pmves that Y(X) C N, = 1Y X),).

[0 prove the other inclusion, assume that yen,-;y(X,). Thus
ye§X,)=U ,mlzpf(X,,), for every n=1. So there must be some index !
(I<i<p) and an infimite subsequence X, (k=1) such that y ey;(X, ). But,
since Y;(X, ) 1s decreasing, yey;(X,) for all n. Now it follows from the |-

L]
and the result 1s proved.

continuity of {; that ye N, > ¢:(X,) =y (X

Combining these results one ends up with a large class of |-continuous map-
pings, in particular if the underlying space E 1s discrete. The following result 1s
an immediate consequence of Theorem 2.3.

THEOREM 4.7. Every increasing translation-invariant transformation on 9(Z%)
which is locally defined, is | -continuous.

4.1. Example 1: The median opening

The median filter py of Section 2, with # (4) finite and odd 1s a |-continuous
mapping since 1t can be written as a finite union of erosions. So it follows
from Theorem 4.5 that M,>,(us Nid)" is an opening, the median opening. A
good understanding of this operation can be achieved by finding its domain of
nvariance. In the example below (see Figure 8), where E = Z? and A is the
CROSS, the domain of invaniance consists of all objects in which every pixel
has at lea.st two 4-neighbours.
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(b)

FIGURE 8.

I'he median opening (uy Nid)* where 4 =CROSS. (a) The
first object is the original image X, the second object is
uy (X)N X, etc. The one but last object 1s the median open-
ing of X by 4. The last object compares X with 1ts median
opening. (b) Some examples of objects which lie in the mn-

variance domain of the median openu

4.2. Example 2: Closing by iteration
By duality, all the results mentioned above for openings carry over to closings:
if ¢ is an increasing, translation-invariant, extensive mapping which 1s f-
continuous, then Y, = N,y is a closing with Inv({,) = Inv(y). As an
example we consider the mapping ¢(X) = (X®A)OB where BCA and B 1s

finite. Then ¢ 1s extensive since
UX)D(XPA)BCA = X1DX (%)

Moreover, y is T-continuous and we may therefore conclude that ¥, 1s a clos-
'm§ with invariant elements Inv(y). It follows from (*) that X eInv(y,,) implies
X4 = X. In Figure 9 below we have chosen SQUARE and CROSS for 4 and
B respectively. Then X is invariant under y,, if and only if X consists of dis-
joint rectangles which lie ‘far enough apart’. If desired the reader may give a
precise description of Inv(y,, ).
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